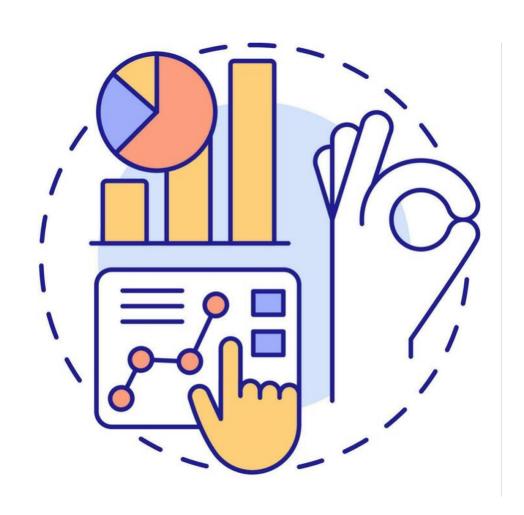


Machine learning for policing: a case study on arrests in Chile

Aproximación a las políticas públicas desde los datos Junio 10, 2023

Machine Learning

Machine Learning and policing



¿Es posible predecir el comportamiento delictivo?

Metodología

Qué **predictores** incluir

Cómo definir el riesgo de **rearresto**

Qué **metodología** implementar.

Resultados

Table 3. The performance indicators of the classification methods.

Method	Precision	Recall	F-score	AUC
Decision tree	0.66	0.52	0.52	0.81
Random forest	0.63	0.57	0.56	0.81
Logistic regression	0.69	0.41	0.51	0.81
Naïve Bayes	0.58	0.92	0.56	0.81
Multilayer perceptron	0.66	0.50	0.56	0.81

Resultados

Table 2. The confusion matrix of the decision tree classifier.

		Re	Real class	
		Arrested	Not arrested	
Predicted class	Arrested Not arrested	10.1% 7.5%	5.8% 76.6%	

Table 3. The performance indicators of the classification methods.

Method	Precision	Recall	F-score	AUC			
Decision tree	0.66	0.52	0.52	0.81			
Random forest	0.63	0.57	0.56	0.81			
Logistic regression	0.69	0.41	0.51	0.81			
Naïve Bayes	0.58	0.92	0.56	0.81			
Multilayer perceptron	0.66	0.50	0.56	0.81			

Limitaciones y supuestos del estudio

Desafíos e implicaciones del aprendizaje automático en la vigilancia predictiva

Reflexiones

Debate

¿Cuáles son las implicaciones éticas y sociales de utilizar algoritmos de aprendizaje automático para la vigilancia predictiva?

Debate

¿Cómo podemos equilibrar los aspectos técnicos y éticos en el diseño de herramientas algorítmicas para las operaciones policiales?

Debate

¿Cuáles son los posibles beneficios y riesgos de incorporar más atributos personales en el algoritmo predictivo?

GRACIAS